Chapter 1

Privacy in the Electronic Society: Emerging Problems and Solutions*

Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina De Capitani di Vimercati, Pierangela Samarati

Dipartimento di Tecnologie dell'Informazione Università degli Studi di Milano 26013 Crema - Italy {ardagna,cremonini,damiani,decapita,samarati}@dti.unimi.it

As the global information infrastructure is becoming more ubiquitous, digital business transactions are increasingly performed using a variety of mobile devices and across multiple communication channels. This new service-oriented paradigm is making the protection of privacy an increasing concern, as it relies on rich context representations (e.g., of location and purpose) and requires users to provide a vast amount of information about themselves and their behavior. This information is likely to be protected by a privacy policy, but restrictions to be enforced may come from different input requirements, possibly under the control of different authorities. In addition, users retain little control over their personal information once it has been disclosed to third parties. Secondary usage regulations are therefore increasingly demanding attention. In this paper, we present the emerging trends in the data protection field to address the new needs and desiderata of today's systems.

1.1. Introduction

Today's digital business processes increasingly rely on services accessed via a variety of mobile devices and across multiple communication channels [2]. Also, terminal devices are now equipped with sensors capable of collecting information from the environment, such as geographical positioning systems (GPS), providing a rich context representation regarding both users and the resources they access. This representation includes potentially sensitive personal information, such as the users' purpose, geographical location, and past preferences. While collecting and exploiting rich context data is indeed essential for customizing network-based processes and services, it is well known that context records can be misused well beyond the original intention of their owners. Indeed, personal information is often disclosed

^{*}A preliminary version of this paper appeared under the title "Privacy in the Electronic Society," in *Proc. of the International Conference on Information Systems Security (ICISS 2006)*, Kolkata, India, December 19-21, 2006 [1].

to third parties without the consent of legitimate data owners; also, professional services exist specializing on gathering and correlating data from heterogeneous repositories, which permit to build user profiles disclosing sensitive information not voluntarily released by their owners.

In the past few years, increasing awareness of the privacy risks of unauthorized user profiling has led to stricter regulations on personal data storage and sharing. It is now widely acknowledged that business processes requiring large-scale information sharing will become widespread only if their users have some convincing assurance that, while they release the information needed to access a service, disclosure of really sensitive data is not a risk. Unfortunately, some of the emerging technological and organizational requirements for preserving users' privacy are still not completely understood; as a consequence, personal data is often poorly managed and sometimes abused. Protecting privacy requires the investigation of different aspects, including:

- data protection requirements composition to take into consideration requirements coming from the data owner, the data holder, and possible privacy law. These multiple authorities scenario should be supported from the administration point of view providing solutions for modular, large-scale, scalable policy composition and interaction [3, 4].
- Security and privacy specifications and secondary usage control to identify under which conditions a party can trust others for their security and privacy. Trust models are one of the techniques be evaluated [5, 6]. In particular, *digital certificates* (statements certified by given entities) can be used to establish properties of their holder (such as identity, accreditation, or authorizations) [7–11]. Moreover, since users often have no idea on how their personal information may be used subsequently, it must also be given a mechanism to specify whether or not to consent to the future use of that information in secondary applications [12];
- Inference and linking attacks protection that is often impossible, if not at the price of not disclosing any information at all. Among the techniques used to protect the released data, k-anonymity promises to be a successful solution towards increasing privacy;
- Context information (including location) protection to avoid unauthorized leaks that may cause loss of privacy, for example, on the user's whereabouts.

These issues pose several new challenges to the design and implementation of privacy-aware systems. As far as mobile devices systems are concerned, a major concern is on-board memory and storage limitations. Lightweight terminals require usage logs to be held by the infrastructure, making inference and linking attacks more likely. On the other hand, usage logs need to contain enough information to enable analysis for detection of violations to the privacy policies in place. Another challenge relates to the fact that client and servers alike will not be under the control of trustworthy authorities, so they cannot be assumed to be trusted. Each device Privacy in the Electronic Society: EmergingProblems and Solutions*

and operating system must provide measures to protect the integrity and confidentiality of sensitive personal data and of the privacy control policies. Finally, the lack of resources available on portable devices such as cell phones and laptops may pose some constraints on the effectiveness of purely cryptographic approaches to privacy solutions, adversaries trying to access personal data could have much more computational resources at their disposal than legitimate clients. In this paper, we discuss these problems and illustrate some current approaches and ongoing research. The remainder of the paper is organized as follows. Section 1.2 addresses the problem of combining authorization specifications that may be independently stated. We describe the characteristics that a policy composition framework should have and illustrate some current approaches and open issues. Section 1.3 addresses the problem of defining policies in open environments such as the Internet. We then describe current approaches and open issues. Section 1.4 addresses the problem of protecting released data against inference and linking attacks. We describe the kanonymity concept and illustrate some related current approaches and open issues. Section 1.5 discusses the problem of protecting privacy of location information in pervasive environments. We describe the *location privacy* concept and illustrate some current approaches and open issues. Finally, Section 1.6 concludes the paper.

1.2. Policy composition

Traditionally, authorization policies have been expressed and managed in a centralized manner: one party administers and enforces the access control requirements. In many cases however, access control needs to combine restrictions independently stated that should be enforced as one, while retaining their independence and administrative autonomy. For instance, the global policy of a large organization can be the combination of the policies of its independent and geographically distributed departments. Each of these departments is responsible for defining access control rules to protect resources and each brings its own set of constraints. To address these issues, a *policy composition framework* by which different component policies can be integrated while retaining their independence should be designed. The framework should be flexible to support different kinds of composition, yet remain simple so to keep control over complex compound policies. It should be based on a solid formal framework and a clear semantics to avoid ambiguities and enable correctness proofs.

Some of the main requirements that a policy composition framework should have can be summarized as follows [3].

• *Heterogeneous policy support.* The composition framework should be able to combine policies expressed in arbitrary languages and possibly enforced by different mechanisms. For instance, a datawarehouse may collect data from different data sources where the security restrictions autonomously stated by the sources and associated with the data are stated with different

specification languages, or refer to different paradigms (e.g., open vs closed policy).

- Support of unknown policies. It should be possible to account for policies that may be not completely known or even be specified and enforced in external systems. These policies are like "black-boxes" for which no (complete) specification is provided, but that can be queried at access control time. Think, for instance, of a situation where given accesses are subject, in addition to other policies, to a policy P enforcing "central administration approval". Neither the description of P, nor the specific accesses that it allows might be available; whereas P can respond yes or no to each specific request. Run-time evaluation is therefore the only possible option for P. In the context of a more complex and complete policy including P as a component, the specification could be partially compiled, leaving only P (and its possible consequences) to be evaluated at run time.
- Controlled interference. Policies cannot always be combined by simply merging their specifications (even if they are formulated in the same language), as this could have undesired side effects. The accesses granted/denied might not correctly reflect the specifications anymore. As a simple example, consider the combination of two systems P_{closed} , which applies a closed policy, based on rules of the form "grant access if (s, o, +a)", and P_{open} which applies an open policy, based on rules of the form "grant access if $\neg(s, o, -a)$ ". Merging the two specifications would cause the latter decision rule to derive all authorizations not blocked by P_{open} , regardless of the contents of P_{closed} . Similar problems may arise from uncontrolled interaction of the derivation rules of the two specifications. Besides, if the adopted language is a logic language with negation, the merged program might not be stratified (which may lead to ambiguous or undefined semantics).
- Expressiveness. The language should be able to conveniently express a wide range of combinations (spanning from minimum privileges to maximum privileges, encompassing priority levels, overriding, confinement, refinement etc.) in a uniform language. The different kinds of combinations must be expressed without changing the input specifications (as it would be necessary even in most recent and flexible approaches) and without ad-hoc extensions to authorizations (like those introduced to support priorities). For instance, consider a policy P_1 regulating access to given documents and the central administration policy P_2 . Assume that access to administrative documents can be granted only if authorized by both P_1 and P_2 . This requisite can be expressed in existing approaches only by explicitly extending all the rules possibly referred to administrative documents to include the additional conditions specified by P_2 . Among the drawbacks of this approach is the rule explosion that it would cause and the complex structure

5

and loss of controls of two specifications; which, in particular, cannot be maintained and managed autonomously anymore.

- Support of different abstraction levels. The composition language should highlight the different components and their interplay at different levels of abstraction. This is important to: *i*) facilitate specification analysis and design; *ii*) facilitate cooperative administration and agreement on global policies; *iii*) support incremental specification by refinement.
- Support for dynamic expressions and controlled modifications. Mobile policies that follow (*stick with*) the data and can be enriched, subject to constraints, as the data move.
- Formal semantics. The composition language should be declarative, implementation independent, and based on a solid formal framework. The need of an underlying formal framework is widely recognized and in particular it is important to *i*) ensure non-ambiguous behavior, and *ii*) reason about and prove specifications properties and correctness [13]. In our framework this is particular in the presence of *incomplete* specifications.

1.2.1. Overview of ongoing work

Various models have been proposed to reason about security policies [14–17]. In [14, 16] the authors focused on the secure behavior of program modules. McLean [17] proposed a formal approach including combination operators: he introduced an algebra of security which enables to reason about the problem of policy conflict that can arise when different policies are combined. However, even though this approach permits to detect conflicts between policies, it did not propose a method to resolve the conflicts and to construct a security policy from inconsistent subpolicies. Hosmer [15] introduced the notion of meta-policies (i.e., policies about policies), an informal framework for combining security policies. Subsequently, Bell [18] formalized the combination of two policies with a function, called *policy* combiner, and introduced the notion of *policy attenuation* to allow the composition of conflicting security policies. Other approaches are targeted to the development of a uniform framework to express possibly heterogeneous policies [19–21]. Recently, Bonatti et al. [3] proposed an algebra for combining security policies together with its formal semantics. Following Bonatti et al.'s work, Jajodia et al. [4] presented a propositional algebra for policies with a syntax consisting of abstract symbols for atomic policy expressions and composition operators. The basic idea of these proposals is to define a set of policy operators used for combining different policies. In particular, in [3] a policy is defined as a set of triples of the form (s, o, a), where s is a constant in (or a variable over) the set of subjects S, o is a constant in (or a variable over) the set of objects O, and a is a constant in (or a variable over) the set of actions A. Here, complex policies can then be obtained by combining policy identifiers, denoted P_i , through the following algebra operators.

- Addition (+) merges two policies by returning their set union. For instance, in an organization composed of different divisions, access to the main gate can be authorized by any of the administrator of the divisions (each of them knows users who needs the access to get to their division). The totality of the accesses through the main gate to be authorized would then be the union of the statements of each single division. Intuitively, additions can be applied in any situation where accesses can be authorized if allowed by any of the component (operand) policies.
- Conjunction (&) merges two policies by returning their intersection. For instance, consider an organization in which divisions share certain documents (e.g., clinical folders of patients). Access to the documents is to be allowed only if all the authorities that have a say on the document agree on it. Intuitively, while addition enforces maximum privilege, conjunction enforces minimum privilege.
- Subtraction (-) restricts a policy by eliminating all the accesses in the second policy. Intuitively, subtraction specifies exceptions to statements made by a policy and it encompasses the functionality of negative authorizations in existing approaches, while probably providing a clearer view of the combination of positive and negative statements. The advantages of subtraction over explicit denials include a simplification of the conflict resolution policies and a clearer semantics. In particular, the scoping of a difference operation allows to clearly and unambiguously express the two different uses of negative authorizations, namely exceptions to positive statements and explicit prohibitions, which are often confused in the models or requires explicit ad-hoc extension to the authorization form. The use of subtraction provides extensible as the policy can be enriched to include different overriding/conflict resolution criteria as needed in each specific context, without affecting the form of the authorizations.
- *Closure* (*) closes a policy under a set of inference (derivation) rules. Intuitively, derivation rules can be thought of as logic rules whose head is the authorization to be derived and whose body is the condition under which the authorization can be derived. Examples of derivation rules can be found in essentially all logic based authorization languages proposed in the literature, where derivation rules are used, for example, to enforce propagation of authorizations along hierarchies in the data system, or to enforce more general forms of implication, related to the presence or absence of other authorizations, or depending on properties of the authorizations [19].
- Scoping restriction (^) restricts the application of a policy to a given set of subjects, objects, and actions. Scoping is particularly useful to "limit" the statements that can be established by a policy and, in some way, enforcing authority confinement. Intuitively, all authorizations in the policy which do not satisfy the scoping restriction are ignored, and therefore ineffective. For

instance, the global policy of an organization can identify several component policies which need to be merged together; each component policy may be restricted in terms of properties of the subjects, objects and actions occurring in its authorizations.^a

- Overriding (o) replaces part of a policy with a corresponding fragment of the second policy. The portion to be replaced is specified by means of a third policy. For instance, consider the case where users of a library who have passed the due date for returning a book cannot borrow the same book anymore unless the responsible librarian vouchers for (authorizes) the loan. While the accesses otherwise granted by the library are stated as a policy P_{lib} , black-list of accesses, meaning triples (user, book, loan) are stated as a policy P_{block} . In the absence of the unless portion of the policy, the accesses to be allowed would simply be $P_{lib} P_{block}$. By allowing the librarian discretion for "overriding" the black list, calling P_{vouch} the triples authorized by the librarians, we can express the overall policy as $o(P_{lib}, P_{vouch}, P_{block})$.
- Template (τ) defines a partially specified policy that can be completed by supplying the parameters. Templates are useful for representing partially specified policies, where some component X is to be specified at a later stage. For instance, X might be the result of further policy refinement, or it might be specified by a different authority.

To fix ideas and make concrete examples, consider a drug-effects warehouse that might draw information from many hospitals. We assume that the warehouse receives information from three hospitals, denoted h_1 , h_2 , and h_3 , respectively. These hospitals are responsible for granting access to information under their (possibly overlapping) authority domains, where domains are specified by a scoping function. The statements made by the hospitals are then unioned meaning that an access is authorized if any of the hospital policy states so. In term of the algebra, the warehouse policy can be represented as an expression of the form $P_1 \cap [o \leq \mathsf{O}_{h_1}] + P_2 \cap [o \leq \mathsf{O}_{h_2}] + P_3 \cap [o \leq \mathsf{O}_{h_3}]$, where P_i denotes the policy defined by hospital h_i , and the scope restriction $\cap [o \leq \mathsf{O}_{h_i}]$ selects the authorizations referred to objects released by hospital h_i .^b Each policy P_i can then be further refined. For instance, consider policy P_1 . Suppose that hospital h_1 defines a policy P_{drug} regulating the access to drug-effects information. Assume also that the drug-effects information can be released only if the hospital's researchers obtain a patient's consent; $P_{consents}$ reports accesses to drug-effects information that the patients agree

^aA simple example of scoping constraint is the limitation of authorizations that can be stated by a policy to a specific portion of the data system hierarchy [19].

^bWe assume that the information collected from the hospitals can be organized in abstractions defining groups of objects that can be collectively referred to with a given name. Objects and groups thereof define a partial order that naturally introduces a hierarchy, where O_{h_i} contains objects obtained from hospital h_i .

to release. We can then express P_1 as $P_{drug} \& P_{consents}$.

1.2.2. Open issues

We briefly describe some open issues that need to be taken into consideration in the future development of a policy composition framework.

- Investigate different *algebra operators and formal languages* for enforcing the algebra and proving properties. The proposed policy composition frameworks can be enriched by adding new operators. Also, the influence of different rule languages on the expressiveness of the algebra has to be investigated.
- Administrative policies and language with support for multiple authorities. The proposed approaches could be enriched by adding administrative policies that define who can specify authorizations/rules (i.e., who can define a component policy) governing access control.
- Policy enforcement. The resolution of the algebraic expression defining a policy P determines a set of ground authorization terms, which define exactly the accesses to be granted according to P. Different strategies can be used to evaluate the algebraic expression for enforcing access control: materialization, run-time evaluation, and partial evaluation. The first one allows a one-time compilation of the policy against which all accesses can be efficiently evaluated and which will then need to be updated only if the policy changes. The second strategy consists in enforcing a run-time evaluation of each request (access triple) against the policy expression to determine whether the access should be allowed. Between these two extremes, possibly combining the advantages of them, there are partial evaluation approaches, which can enforce different degrees of computation/materialization.
- Incremental approaches to enforce *changes to component policies*. When a materialization approach is used to evaluate the algebraic expression for enforcing access control, incremental approaches [22] can be applied to minimize the recomputation of the policy.
- Mobile policies. Intuitively, a mobile policy is the policy associated with an object and that follows the object when it is passed to another site. Because different and possibly independent authorities can define different parts of the mobile policy in different time instants, the policy can be expressed as a policy expression. In such a context, there is the problem on how ensure the obedience of policies when the associated objects move around. Within the context of mobile policies we can also classify the problem of providing support for handling "sticky" policies [23], that is, policies that remain attached to data as they move between entities and are needed to enforce secondary use constraints (see Section 1.3). Mobile policies encompass also the problem of digital right management (DRM) as

Privacy in the Electronic Society: EmergingProblems and Solutions^{*}

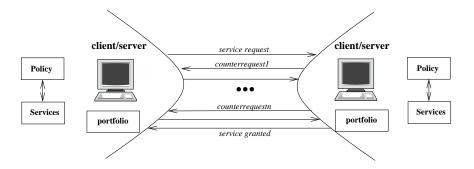


Fig. 1.1. Client/server interaction

they also require constraints of the owner to remain attached to the data.

1.3. Access control in open systems

Open environments are characterized by a number of systems offering different resources/services. In such a scenario, interoperability is a very important issue and traditional assumptions for establishing and enforcing policies do not hold anymore. A server may receive requests not just from the local community of users, but also from remote, previously unknown users. The server may not be able to authenticate these users or to specify authorizations for them (with respect to their identity). Early approaches that attempt to solve these issues, PolicyMaker [6] and KeyNote [5], basically use credentials to describe specific delegation of trusts among keys and to bind public keys to authorizations. Although early trust management systems do provide an interesting framework for reasoning about trust between unknown parties, assigning authorizations to keys may result limiting and make authorization specifications difficult to manage.

A promising direction to overcome such a disadvantage is represented by *dig-ital certificates*. A digital certificate is basically the on-line counterparts of paper credentials (e.g., drivers licenses). Digital certificates can be used to determine whether or not a party may execute an access on the basis properties that the requesting party may have. These properties can be proven by presenting one or more certificates [8–11]. The development and effective use of credential-based models require tackling several problems related to credential management and disclosure strategies, delegation and revocation of credentials, and establishment of credential chains [24–30].

Figure 1.1 depicts the basic scenario we consider. We are given different parties that interact with each other to offer services. A party can act both as a server and a client and each party has i) a set of services it provides and ii) a *portfolio* of properties (attributes) that the party enjoys. Access restrictions to the services are expressed by policies that specified the properties that a requester should enjoy to gain access to the services. The services are meant to offer certain functionalities

9

that depend on the input parameters supplied by its users. Often input parameters must fulfill certain conditions to assure correct behavior of a service. We identified the following requirements for specifying credential-based access control.

- Attribute interchange. A server should be able to communicate to the client the requirements it need to satisfy to get access. Also, a client should be able to prove its eligibility for a service. This communication interchange could be performed in different ways (e.g., the involved parties can apply different strategies with respect to which properties are submitted).
- Support for fine-grained reference to attributes within a credential. The system should allow the selective disclosure of credentials which is a requirement that is not usually supported because users attributes are defined according to functional needs, making it easier to collect all credentials in a row instead of iteratively asking for the ones strictly necessary for a given service only.
- Support for hierarchical relationships and abstractions on services and portfolio. Attribute-based access control policies should be able to specify accesses to collection of services based upon collection of attributes processed by the requester.
- Expressiveness and flexibility. The system must support the specification of complex access control requirements. For instance, consider a service that offers telephone contracts and requires that the customer is at least 18 years of age. The telephone selling service has two input parameters, namely homeAddress and noticePeriod. The homeAddress must be a valid address in Italy and noticePeriod must be either one or three months. Further, the service's access control policy requires that contracts with one month notice period and home address outside a particular geographical region are closed only with users who can prove their AAA membership. Hence, we see that the access control requirements of a service may require more than one interaction between a client and a server.
- *Purpose specific permission*. The permission to release data should relate to the purpose for which data are being used or distributed. The model should prevent information collected for one purpose from being used for other purposes.
- Support for meta-policies. The system should provide meta-policies for protecting the policy when communication requisites. This happens when a list of alternatives (policies) that must be fulfilled to gain the access to the data/service is returned to the counterpart. For instance, suppose that the policy returned by the system is "citizenship=EU". The party can decide to return to the client either the policy as it is or a modified policy simply requesting the user to prove its nationality (then protecting the information that access is restricted to EU citizens).

11

Privacy in the Electronic Society: EmergingProblems and Solutions*

• Support for secondary use specifications and control. The information owner should be able to control further dissemination and use of personal information. This represents a novel feature that is no simply concerned with authorizing the access to data and resources but also with defining and enforcing the way data and resources are subsequently managed.

1.3.1. Overview of ongoing work

The first proposals investigating the application of credential-based access control regulating access to a server were made by Winslett et al. [26, 29]. Here, access control rules are expressed in a logic language and rules applicable to an access can be communicated by the server to clients. In [30, 31] the authors investigated trust negotiation issues and strategies that a party can apply to select credentials to submit to the opponent party in a negotiation. In [7] the authors proposed a uniform framework for regulating service access and information disclosure in an open, distributed network system like the Web. Like in previous proposals, access regulations are specified as logical rules, where some predicates are explicitly identified. Certificates are modeled as *credential expressions* of the form "credential_name(attribute_list)", where credential_name is the credential name and attribute_list is a possibly empty list of elements of the form "attribute_name=value_term", where value_term is either a ground value or a variable. Besides credentials, the proposal also allows to reason about declarations (i.e., unsigned statements) and user-profiles that the server can maintain and exploit for taking the access decision. Communication of requisites to be satisfied by the requester is based on a filtering and renaming process applied on the server's policy, which exploits partial evaluation techniques in logic programs. Yu et al. [11, 30, 32] developed a service negotiation framework for requesters and providers to gradually expose their attributes. In [30] the PRUdent NEgotiation Strategy (PRUNES) has been presented. This strategy ensures that the client communicates its credentials to the server only if the access will be granted and the set of certificates communicated to the server is the minimal necessary for granting it. Each party defines a set of *credential policies* that regulates how and under what conditions the party releases its credentials. The negotiation consists of a series of requests for credentials and counter-requests on the basis of the parties' credential policies. The credential policies established can be graphically represented through a tree, called *negotiation search tree*, composed of two kinds of nodes: *credential nodes*, representing the need for a specific credential, and *disjunctive nodes*, representing the logic operators connecting the conditions for credential release. The root of a tree node is a service (i.e., the resource the client wants to access). The negotiation can therefore be seen as a backtracking operation on the tree. The backtracking can be executed according to different strategies. For instance, a *brute-force* backtracking is complete and correct, but is too expensive to be used in a real scenario. The authors therefore proposed the PRUNES method that prunes the search tree without compromising completeness

or correctness of the negotiation process. The basic idea is that if a credential C has just been evaluated and the state of the system is not changed too much, than it is useless to evaluate again the same credential, as the result will be exactly as the result previously computed. The same research group proposed also a method for allowing parties adopting different negotiation strategies to interoperate through the definition of a *Disclosure Tree Strategy* (DTS) family [32]. The authors show that if two parties use different strategies from the DST family, they are able to establish a negotiation process. The DTS family is a closed set, that is, if a negotiation strategy can interoperate with any DST strategy, it must also be a member of the DST family.

In [33] a Unified Schema for Resource Protection (UniPro) has been proposed. This mechanism is used to protect the information in policies. UniPro gives (opaque) names to policies and allows any named policy P_1 to have its own policy P_2 meaning that the contents of P_1 can only be disclosed to parties who have shown that they satisfy P_2 . Another approach for implementing access control based on credentials is the Adaptive Trust Negotiation and Access Control (ATNAC) [34]. This method grants or denies access to a resource on the basis of a suspicion level associated with subjects. The suspicion level is not fixed but may vary on the basis of the probability that the user has malicious intents. In [35] the authors proposed to apply the automated trust negotiation technology for enabling secure transactions between portable devices that have no pre-existing relationship. In [11] the authors presented a negotiation architecture, called *TrustBuilder*, that is independent from the language used for policy definition and from the strategies adopted by the two parties for policy enforcement. Other logic-based access control languages based on credentials have been introduced. For instance, D1LP and RT [36, 37], the SD3 language [38], and Binder [39]. In [19, 21] logic languages are adopted to specify access restrictions in a certificate-based access control model.

Few proposals have instead addressed the problem of how to regulate the use of personal information in secondary applications. In [40], the authors proposed an XML-based privacy preference expression language, called *PReference Expression* for Privacy (PREP), for storing the user's privacy preferences with Liberty Alliance. PREP allows users to specify, for each attribute, a privacy label that is characterized by a purpose, type of access, recipient, data retention, remedies, and disputes. The Platform for Privacy Preferences Project (P3P) [41] is another XML-based language that allows service providers and users to reach an agreement on the release of personal data. Basically, a service provider can define a P3P policy, which is an XML document, where it is possible to define the recipient of the data, desired data, consequence of data release, purpose of data collection, data retention policy, and dispute resolution mechanisms. Users specify their privacy preferences in term of a policy language, called APPEL [42], and enforce privacy protection through a user agent: the user agent compares the users' privacy policy with the service provider P3P policy and checks whether the P3P policy conforms to the user

13

Privacy in the Electronic Society: EmergingProblems and Solutions*

privacy preferences. Although P3P is a good starting point, it is not widely adopted by the service providers and presents some limitations on the user side [43]. The main limitation is that the definition of simple privacy preferences is a complex task and writing APPEL preferences is error prone. For this reason, Agrawal et al. [43] proposed a new language, called XPref, for user preferences. However, both APPEL and XPref are not sufficiently expressive because, for example, they do not support negotiation and contextual information, and they do not allow the definition of attribute-based conditions. Another important disadvantage of these approaches is that users have a passive role: a service provider defines a privacy policy that users can only accept or reject. In [12] a new type of privacy policy, called *data* handling policy, that regulates the secondary use of a user's personal data has been discussed. A data handling policy regulates how Personal Identifiable Information (PII) will be used (e.g., information collected through a service will be combined with information collected from other services and used in aggregation for market research purposes), how long PII will be retained (e.g., information will be retained as long as necessary to perform the service), and so on. Users can therefore use these policies to define how their information will be used and processed by the counterpart.

1.3.2. Open issues

Although current approaches supporting attribute-based policies are technically mature enough to be used in practical scenarios, there are still some issues that need to be investigated in more detail to enable more complex applications. We summarize these issues as follows [7].

- Ontologies. Due to the openness of the scenario and the richness and variety of security requirements and attributes that may need to be considered, it is important to provide parties with a means to understand each other with respect to the properties they enjoy (or request the counterpart to enjoy). Therefore, common languages, dictionaries, and ontologies must be developed.
- Access control evaluation and outcome. Users may be occasional and they may not know under what conditions a service can be accessed. Therefore, to make a service "usable", access control mechanisms cannot simply return "yes" or "no" answers. It may be necessary to explain why authorizations are denied, or better how to obtain the desired permissions. Therefore, the system can return an undefined response meaning that current information is insufficient to determine whether the request can be granted or denied. For instance, suppose that a user can use a particular service only if she is at least eighteen and provides a credit card. According to this policy, two cases can occur: *i*) the system knows that the user is not yet eighteen and therefore returns a negative response; *ii*) the user has proved

that she is eighteen and the system returns an undefined response together with the request to provide the information of a credit card.

- Privacy-enhanced policy communication. Since access control does not return only a "yes" or "no" access decision, but it returns the information about which conditions need to be satisfied for the access to be granted ("undefined" decision), the problem of communicating such conditions to the counterpart arises. To fix the ideas, let us see the problem from the point of view of the server (the client's point of view is symmetrical). A naive solution consists in giving the client a list with all the possible sets of credentials that would enable the service. This solution is however not feasible due to the large number of possible alternatives. Also, the communication process should not disclose "too much" of the underlying security policy, which might also be regarded as sensitive information.
- Negotiation strategy. Credentials grant parties different choices with respect to what release (or ask) the counterpart and when to do it, thus allowing for multiple trust negotiation strategies [32]. For instance, an *eager* strategy, requires parties to turn over all their credentials if the release policy for them is satisfied, without waiting for the credentials to be requested. By contrast, a *parsimonious* strategy requires that parties only release credentials upon explicit request by the server (avoiding unnecessary releases).
- *Composite services*. In case of a composite service (i.e., a service that is decomposable into other services called component services) there must be a semi-automatic mechanism to calculate the policy of a composite service from the policies of its component services.
- Semantics-aware rules. Although attribute-based policies allow the specifications of restrictions based on generic attributes or properties of the requestor and the resources, they do not fully exploit the semantic power and reasoning capabilities of emerging web applications. It is therefore important to be able to specify access control rules about subjects accessing the information and about resources to be accessed in terms of rich ontologybased metadata (e.g., Semantic Web-style ones) increasingly available in advanced e-services applications [44].

1.4. Privacy issues in data collection and disclosure

Internet provides unprecedented opportunities for the collection and sharing of privacy-sensitive information from and about users. Information about users is collected every day, as they join associations or groups, shop for groceries, or execute most of their common daily activities. Consequently, users have very strong concerns about the privacy of their personal information and they fear that their personal information can be misused. Protecting privacy requires therefore the investigation of many different issues including the problem of *protecting released* $\label{eq:privacy} Privacy \ in \ the \ Electronic \ Society: \ Emerging Problems \ and \ Solutions^*$

information against inference and linking attacks, which are becoming easier and easier because of the increased information availability and ease of access as well as the increased computational power provided by today's technology. In fact, released data too often open up privacy vulnerabilities through, for example, data mining techniques and record linkage. Indeed, the restricted access to information and its expensive processing, which represented a form of protection in the past do not hold anymore. In addition, while in the past data were principally released in tabular form (macrodata) and through statistical databases, many situations require today that the specific stored data themselves, called microdata, be released. The advantage of releasing microdata instead of specific pre-computed statistics is an increased flexibility and availability of information for the users. At the same time however microdata, releasing more specific information, are subject to a greater risk of privacy breaches. To this purpose, the main requirements that must be taken into account are the following.

- *Identity disclosure protection*. Identity disclosure occurs whenever it is possible to identify a subject, called *respondent*, from the released data. It should therefore be adopted techniques for limiting the possibility of identifying respondents.
- Attribute disclosure protection. Identity disclosure protection alone do not guarantee privacy of sensitive information because all the respondents in a group could have the same sensitive information. To overcome this issue, mechanisms that protect sensitive information about respondents should be adopted.
- Inference channel. Given the possibly enormous amount of data to be considered, and the possible inter-relationships between data, it is important that the security specification and enforcement mechanisms provide automatic support for complex security requirements, such as those due to inference and data association channels.

To protect the anonymity of the respondents to whom the released data refer, data holders often remove, encrypt, or code identity information. Identity information removed or encoded to produce anonymous data includes names, telephone numbers, and Social Security Numbers. Although apparently anonymous, however, the de-identified data may contain other quasi-identifying attributes such as race, date of birth, sex, and geographical location. By linking such attributes to publicly available databases associating them with the individual's identity, data recipients can determine to which individual each piece of released data belongs, or restrict their uncertainty to a specific subset of individuals. This problem has raised particular concerns in the medical and financial fields, where microdata, which are increasingly released for circulation or research, can be or have been subject to abuses, compromising the privacy of individuals.

\mathbf{SSN}	Name	Race	Date of birth	\mathbf{Sex}	ZIP	Marital status	Disease
		asian	71/07/05	F	20222	Single	hypertension
		asian	74/04/13	\mathbf{F}	20223	Divorced	Flu
		asian	74/04/15	\mathbf{F}	20239	Married	chest pain
		asian	73/03/13	Μ	20239	Married	Obesity
		asian	73/03/18	Μ	20239	Married	hypertension
		black	74/11/22	F	20238	Single	short breath
		black	74/11/22	F	20239	Single	Obesity
		white	74/11/22	F	20239	Single	Flu
		white	74/11/22	F	20223	Widow	chest pain
				(a)			
Nam	ie	Addre	ss City		ZIP	DOB Sex	Status
Susai	n Doe	Eye str	eet Washington	n DC	20222	71/07/05 F	single
				•			
				(b)			

16 C.A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, P. Samarati

Fig. 1.2. An example of private table PT (a) and non de-identified public available table

To better illustrate the problem, consider the microdata table in Figure 1.2(a) and the non de-identified public available table in Figure 1.2(b). In the microdata table, which we refer to as private table (PT), data have been de-identified by suppressing names and Social Security Numbers (SSNs) so not to explicitly disclose the identities of respondents. However, the released attributes Race, Date of birth, Sex, ZIP, and Marital status can be linked to the public tuples in Figure 1.2(b) and reveal information on Name, Address, and City. In the private table, for example, there is only one single female (F) born on 71/07/05 and living in the 20222 area. This combination, if unique in the external world as well, uniquely identifies the corresponding tuple as pertaining to "Susan Doe, 20222 Eye Street, Washington DC", thus revealing that she has reported hypertension. While this example demonstrates an exact match, in some cases, linking allows one to detect a restricted set of individuals among whom there is the actual data respondent.

Among the microdata protection techniques used to protect de-identified microdata from linking attacks, there are the commonly used approaches like sampling, swapping values, and adding noise to the data while maintaining some overall statistical properties of the resulting table [45]. However, many uses require the release and explicit management of microdata while needing truthful information within each tuple. This "data quality" requirement makes inappropriate those techniques that disturb data and therefore, although preserving statistical properties, compromise the correctness of single tuples [45]. *k*-anonymity, together with its enforcement via generalization and suppression, has been proposed as an approach to protect respondents' identities while releasing truthful information [46].

Privacy in the Electronic Society: EmergingProblems and Solutions*

The concept of k-anonymity tries to capture, on the private table to be released, one of the main requirements that has been followed by the statistical community and by agencies releasing the data, and according to which the *released data should* be indistinguishably related to no less than a certain number of respondents.

The set of attributes included in the private table, also externally available and therefore exploitable for linking, is called *quasi-identifier*. The requirement abovementioned is then translated in the k-anonymity requirement [46]: each release of data must be such that every combination of values of quasi-identifiers can be indistinctly matched to at least k respondents. Since it seems impossible, or highly impractical and limiting, to make assumptions on the datasets available for linking to external attackers or curious data recipients, essentially k-anonymity takes a safe approach requiring that, in the released table itself, the respondents be indistinguishable (within a given set) with respect to a set of attributes. To guarantee the k-anonymity requirement, k-anonymity requires each quasi-identifier value in the released table to have at least k occurrences. This is clearly a sufficient condition for the k-anonymity requirement: if a set of attributes of external tables appears in the quasi-identifier associated with the private table PT, and the table satisfies this condition, the combination of the released data with the external data will never allow the recipient to associate each released tuple with less than k respondents. For instance, with respect to the microdata table in Figure 1 and the quasi-identifier Race, Date of birth, Sex, ZIP, Marital status, the table satisfies k-anonymity with k = 1 only, since there are single occurrences of values over the quasi-identified (e.g., "asian, 71/07/05, F, 20222, single").

1.4.1. Overview of ongoing work

As above-mentioned, k-anonymity proposals focus on generalization and suppression techniques. Generalization consists in representing the values of a given attribute by using more general values. This technique is based on the definition of a generalization hierarchy, where the most general value is at the root of the hierarchy and the leaves correspond to the most specific values. Formally, the notion of *domain* (i.e., the set of values that an attribute can assume) is extended by assuming the existence of a set of generalized domains. The set of original domains together with their generalizations is referred to as Dom. Each generalized domain contains generalized values and there exists a mapping between each domain and its generalizations. This mapping is stated by means of a *generalization relationship* \leq_D . Given two domains D_i and $D_j \in \mathsf{Dom}, D_i \leq_D D_j$ states that values in domain D_i are generalizations of values in D_i . The generalization relationship \leq_D defines a partial order on the set Dom of domains, where each D_i has at most one direct generalization domain D_i , and all values in each domain can always be generalized to a single value. The definition of a generalization relationship implies the existence, for each domain $D \in \mathsf{Dom}$, of a totally ordered hierarchy, called *domain* generalization hierarchy, denoted DGH_D . As an example, consider attribute ZIP

17

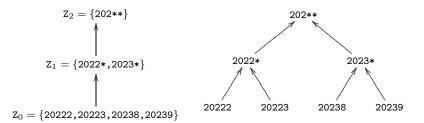


Fig. 1.3. An example of domain generalization hierarchy for attribute ZIP

code and suppose that a step in the corresponding generalization hierarchy consists in suppressing the least significant digit in the ZIP code. Figure 1.3 illustrates the corresponding domain generalization hierarchy. In this case, for example, if we choose to apply one generalization step, values 20222, 20223, 20238, and 20239 are generalized to 2022* and 2023*. A generalization process therefore proceeds by replacing the values represented by the leaf nodes with one of their ancestor nodes at a higher level. Different generalized microdata tables can be built, depending on the amount of generalization applied on the considered attribute.

Suppression is a well-known technique that consists in protecting sensitive information by removing it. The introduction of suppression can reduce the amount of generalization necessary to satisfy the k-anonymity constraint.

Generalization and suppression can be applied at different levels of granularity. Generalization can be applied at the level of single column (i.e., a generalization step generalizes all the values in the column) or single cell (i.e., for a specific column, the table may contain values at different generalization levels). Suppression can be applied at the level of row (i.e., a suppression operation removes a whole tuple), column (i.e., a suppression operation obscures all the values of a column), or single cells (i.e., a k-anonymized table may wipe out only certain cells of a given tuple/attribute). The possible combinations of the different choices for generalization and suppression (including also the choice of not applying one of the two techniques) result in different k-anonymity proposals and different algorithms for k-anonymity.

Note that the algorithms for solving k-anonymity aim at finding a k-minimal table, that is, one that does not generalize (or suppress) more than it is needed to reach the threshold k. As an example, consider the microdata table in Figure 1.2(a) and suppose that the quasi-identifier is {Race, Date of birth, Sex, ZIP}.

Figure 1.4 illustrates an example of 2-anonymous table obtained by applying the algorithm described in [46], where generalization is applied at the column level and suppression is applied at the row level. Note that the first tuple in the original table has been suppressed and attribute **Date of birth** has been generalized by removing the day and attribute **ZIP** has been generalized by applying two generalization steps along the domain generalization hierarchy in Figure 1.3.

In [47] we defined a possible taxonomy for k-anonymity and discussed the main

19

\mathbf{SSN}	Name	Race	Date of birth	\mathbf{Sex}	ZIP	Marital status	Disease
		asian	74/04/	F	202**	divorced	Flu
		asian	74/04/	F	202**	married	chest pain
		asian	73/03/	Μ	202**	married	obesity
		asian	73/03/	Μ	202**	married	hypertension
		black	74/11/	F	202**	single	short breath
		black	74/11/	F	202**	single	obesity
		white	74/11/	F	202**	single	flu
		white	74/11/	F	202**	Widow	chest pain

Fig. 1.4. An example of a 2-anonymized table for the private table PT in Figure 1.2(a)

proposals existing in the literature for solving the k-anonymity problems. Basically, the algorithms for enforcing k-anonymity can be partitioned into three main classes: exact, heuristic, and approximation algorithms, respectively. While exact and heuristic algorithms produce k-anonymous tables by applying attribute generalization and tuple suppression and are exponential in the size of the quasiidentifier [46, 48–53], approximation algorithms produce k-anonymous tables by applying cell suppression without generalization or cell generalization without suppression [54–56]. In these case, exact algorithms are not applicable because the computational time could be exponential in the number of tuples in the table.

Samarati [46] presented an algorithm that exploits a binary search on the domain generalization hierarchy to avoid an exhaustive visit of the whole generalization space. Since the k-anonymity definition is based on a quasi-identifier, the algorithm works only on this set of attributes and on tables with more than k tuples (this last constraint being clearly a necessary condition for a table to satisfy k-anonymity). Bayardo and Agrawal [48] presented an optimal algorithm, called k-Optimize, that starts from a fully generalized table (with all tuples equal) and specializes the dataset in a minimal k-anonymous table, exploiting ad-hoc pruning techniques. LeFevre, DeWitt, and Ramakrishnan [51] described an algorithm that uses a bottom-up technique and a priori computation.

Iyengar [53] presented genetic heuristic algorithms and solves the k-anonymity problem using an incomplete stochastic search method. The method does not assure the quality of the solution proposed, but experimental results show the validity of the approach. Winkler [50] proposed a method based on simulated annealing for finding locally minimal solutions, which requires high computational time and does not assure the quality of the solution. Fung, Wang and Yu [49] presented a topdown heuristic to make a table to be released k-anonymous. The algorithm starts from the most general solution, and iteratively specializes some values of the current solution until the k-anonymity requirement is violated. Each step of specialization increases the information and decreases the anonymity.

Meyerson and Williams [56] presented an algorithm for k-anonymity, which guarantees a $O(k \log(k))$ -approximation. Aggarwal et al. [54, 55] illustrated two ap-

proximation algorithms that guarantee a O(k)-approximation solution. Note that although both heuristics and approximation algorithms do not guarantee the minimality of their solution, and we cannot perform any evaluation on the result of a heuristic, an approximation algorithm guarantees near-optimum solutions.

k-anonymity is also currently the subject of many interesting studies. In particular, these studies aim at: studying efficient algorithms for k-anonymity enforcement; using k-anonymity as a measure on information disclosure due to a set of views [57]; extending its definition to protect the released data against attribute, in contrast to identity, disclosure (ℓ -diversity) [58]; supporting fine-grained application of generalization and suppression; and investigating additional techniques for k-anonymity enforcement [59].

1.4.2. Open issues

We now summarize the main open issues in developing a k-anonymity solution.

- Extensions and enrichment of the definition. k-anonymity captures only the defence against identity disclosure attacks, while remaining exposed to attribute disclosure attacks [46]. Some researchers have just started proposing extensions to k-anonymity [58] to capture also attribute disclosure, however research is still to be done.
- Protection against utility measures. As we can imagine the more the protection, the less precise or complete the data will be. Research is needed to develop measures to allow users to assess, besides the protection offered by the data, the utility of the released data. Clearly, utility may be different depending on the data recipients and the use intended for the information. Approaches should be therefore devised that maximize information utility with respect to intended uses, while properly guaranteeing privacy
- Efficient algorithms. Computing a table that satisfies k-anonymity guaranteeing minimality (i.e., minimal information loss or, in other words, maximal utility) is an NP-hard problem and therefore computationally expensive. Efficient heuristic algorithms have been designed, but still research in needed to improve the performance. Indexing techniques could be exploited in this respect.
- New techniques. The original k-anonymity proposal assumed the use of generalization as suppression since, unlike others, they preserve truthfulness of the data. The k-anonymity property is however not tied to a specific technique and alternative techniques could be investigated.
- Merging of different tables and views. The original k-anonymity proposal as well as most subsequent work assume the existence of a single table to be released with the further constraints that the table contains at most one tuple for each respondents. Work is needed to release these two constraints. In particular, the problem of releasing different tables providing anonymity

21

 $\label{eq:privacy} Privacy \ in \ the \ Electronic \ Society: \ Emerging Problems \ and \ Solutions^*$

even in presence of join that can allow inferring new information needs to be investigated.

• External knowledge. k-anonymity assumes the data recipient has access to external database linking identities with quasi identifiers; it did not however model external knowledge that can be further exploited for inference and expose the data to identity or attribute disclosure. Work is needed to allow modeling external knowledge and taking it into account in the process of computing the table to be released.

1.5. Location privacy issues

The pervasive diffusion of mobile communication devices and technical improvements of location technologies are fostering the development of a new wave of applications that use the physical position of individuals to offer location-based services for business, social, or informational purposes [60]. Location awareness supports an extended context of interaction for each user and resource in the environment, eventually modeling a number of spatial-temporal relationships among users and resources. In a location-aware environment, context is not the static situation of a predefined environment; rather, it is a dynamic part of the process of interacting with a changing environment, composed of mobile users and resources [61].

Location-related information can be classified as follows.

- Punctual location, absolute longitude-and-latitude geographical location provided by systems like GPS (*Global Positioning System*). In outdoor and rural environments GPS, when at least three satellites are visible, delivers position information with an acceptable accuracy. ^c Today, GPS chipsets are integrated into most mainstream cell phones and PDAs; when it is not available, the cellular network itself can be used as a basic geo-location service [62].
- *Logical* or *local* location, composed of location assertions with different levels of precision, for example, specifying that the user in a specific country, city, building or room.

Obviously, given the necessary background information (e.g., in the form of a map with geographical coordinates) there may be a function that maps punctual locations to logical ones. Recent research has proposed many location techniques producing a user's logical location, punctual location or both, depending on application requirements. Location techniques have been proposed for local wireless networking: for example, Microsoft Research's RADAR system requires an initial calibration in which 802.11 readings are made on a 1 meter (1m) grid. Then, this

^cIn dense urban areas or inside buildings, localization with GPS may becomes critical because the satellites are not visible from the mobile terminal. By 2008 the European Union will deploy Galileo, a next-generation GPS system that promises greater accuracy and operation covering both indoors and out, due to stronger radio signals that should penetrate most buildings.

grid is used for positioning 802.11 access points (AP). If the APs are positioned correctly, knowing the readings of a device is sufficient for estimating its location. The Place Lab project [63] does not rely on the availability of a grid of previous readings; rather, it predicts location via the positions of the APs, read from a database cached on each device.

Today, the public database wigle.net contains the position of more than 2 million APs in the US and in Europe, providing quick-and-dirty location in some key urban areas.

In this scenario, it comes with no surprise that personal privacy, which is already the center of many concerns for the risks posed by current on-line services [64, 65], is considered seriously threatened by location-based services. In addition, the publicity gained by recent security incidents that have targeted individuals privacy, revealed faulty data management practices and unauthorized trading of users personal information (including, ID thefts and unauthorized profiling). For instance, some legal cases have been reported, where rental companies used GPS technology to track their cars and charge users for agreement infringements [66], or where an organization used a "Friend finder" service to track its own employees [67]. Research on privacy issue has also gained a relevant boost since providers of online and mobile services, often, largely exceeded in collecting personal information as a requirement for service provision.

In such a worrisome scenario, the concept of *location privacy* can be defined as the right of individuals to decide how, when, and for which purposes their location information could be released to other parties. The lack of location privacy protection could result in severe consequences that make users the target of fraudulent attacks [68]:

- *unsolicited advertising*, such as the location of the user could be exploited, without her consent, to provide advertisements of products and services available nearby the user position;
- *physical attacks or harassment*, the location of the user could be used to carry physical assaults to individuals;
- *users profiling*, the location of the user, which intrinsically carries personal information, could be used to infer other sensitive information such as state of health, personal habits, professional duties, and the like;
- *denial of service*, the location of the user could be used to deny accesses to services under some circumstances.

Situations in which sensing technologies have been used for stalking users locations and harassing individuals have been already reported [67, 69].

In this context, location privacy can assume several meanings and pursue different objectives depending on the scenario in which the users are moving and on the services with which the users are interacting with. Location privacy protection could be aimed either at preserving: the privacy of the user identity, the single Privacy in the Electronic Society: EmergingProblems and Solutions*

user location measurement, or the location movement of the user monitored in a certain period of time. The following categories of location privacy can then be identified [60].

- *Identity privacy.* The main goal is to protect the identities of the users associated with or inferable from location information. For instance, many online services provide a person with the ability to establish a relationship with some other entities without her personal identity being disclosed to those entities. In this case, the best possible location measurement can be provided to the others entities but the identity of the users must be preserved.
- *Position privacy.* The main goal is to perturb locations of the users to protect the positions of individual users. In particular, this type of location privacy is suitable for environments where users identities are required for a successful service provisioning. An example of technique that most solutions either explicitly or implicitly exploit, consists in scaling a location to a coarser granularity (e.g., from meters to hundreds of meters, from a city block to the whole town, and so on).
- *Path privacy.* The main goal is to protect the privacy of the users that are monitored during a certain period of time. The location-based services will no longer receive a single location measurement, but they will gather many samples allowing them to track users. In particular, path privacy can be guaranteed by adapting the techniques used for identity and position privacy to preserve the privacy of a user that is continuously monitored.

These categories of location privacy pose different requirements that are guaranteed by different privacy technologies, which we will analyze in the following Section. Note that no technique is able to provide a general solution satisfying all the privacy requirements.

1.5.1. Overview of ongoing work

Accordingly to the categories of location privacy previously described, three different classes of location privacy techniques can be introduced: anonymity-based, policy-based, and obfuscation-based. These classes are partially overlapped in scope and could be potentially suitable to cover requirements coming from one or more of the categories of location privacy. Anonymity-based and obfuscation-based techniques can be usually regarded as dual categories. While anonymity-based techniques have been primarily defined to protect identity privacy and are less suitable for protecting position privacy, obfuscation-based techniques are well suited for position protection and less appropriate for identity protection. Anonymity-based and obfuscation-based techniques are well-suited for protecting path privacy. Nevertheless, more studies and proposals have been focused on anonymity-based rather than on obfuscation-based techniques. Policy-based techniques are in general suitable

for all the location privacy categories. However, they can be difficult to understand and manage for end users.

Anonymity-based solutions. An important line of research in location privacy protection relies on the notion of *anonymity* [70–74]. Anonymity typically refers to an individual, and it means that the personal identity, or personally identifiable information of that person is not known.

Mix zones is the method developed by Beresford and Stajano [70, 75] to enhance privacy in location-based services by means of an anonymity service based on an infrastructure that delays and reorders messages from subscribers within pre-defined zones. In particular, Mix zone model is managed by a trusted middleware that lies between the positioning systems and the third party applications and is responsible for limiting the information collected by applications. The Mix zone model is based on the concepts of *application zone* and *mix zones*. The former represents homogeneous application interests in a specific geographic area, while the latter represents areas in which a user cannot be tracked. In particular, within mix zones, a user is anonymous in the sense that the identities of all users coexisting in the same zone are mixed and become indiscernible. Furthermore, the infrastructure makes a user entering the mix zone unlinkable from other users leaving it. The authors also provide an analysis of an attacker behavior by defining and calculating the level of anonymity assured to the users [70]. In particular, the success of an attack aimed at recovering users identities is inversely proportional to the anonymity level. To conclude, the Mix zones model is aimed at protecting long-term user movements still allowing the interaction with many location-based services.

Bettini et. al. [71] proposed a framework able to evaluate the risk of sensitive location-based information dissemination, and introduces a technique aimed at supporting k-anonymity [46]. In particular, the authors put forward the idea that the geo-localized history of the requests submitted by a user can be considered as a *quasi-identifier* to access sensitive information about that individual. For instance, a user tracked during working days is likely to commute from her house to the workplace in a specific time frame in the morning and come back in another specific time frame in the evening. This information can be used to easily re-identify the user. The privacy preservation framework based on the concepts of quasi-identifier and k-anonymity is designed for such scenario. In particular, the service provider gathering both users requests to a single user. To make this possible, there must exist k-1 users having a personal history of locations compatible with the requests that have been issued.

Gruteser and Grunwald [73] defined k-anonymity in the context of location obfuscation. The paper proposes a middleware architecture and an adaptive algorithm to adjust location information resolution, in spatial or temporal dimensions, to comply with specific anonymity requirements. The authors proposed the concepts of spatial and temporal cloaking used to transform a user's location to comply with the requested k level of anonymity. In particular, spatial cloaking guarantees the k-anonymity required by the users by enlarging the area in which a user is located until enough indistinguishable individuals are contained. The same reasoning could be done for the temporal cloaking, which is an orthogonal process with respect to the spatial one. Whereas this method could provide spatial coordinates with higher accuracy, it reduces the accuracy in time.

Gedik and Liu [72] described another k-anonymity model aimed at protecting location privacy against various privacy threats, and provided a framework supporting location k-anonymity. Each user is able to define the minimum level of anonymity and the maximum acceptable temporal and spatial resolution for her location measurement. Then, the focus of the paper is on the definition of a message perturbation engine responsible for providing location anonymization of user's request messages through identity removal and spatio-temporal obfuscation of location information.

Mokbel et al. [74] presented a framework, named Casper, aimed at changing traditional location-based servers and query processors to provide the users with anonymous services. Users can define their privacy preferences through a k, which is the number of users to be indistinguishable, and A_{min} representing the minimal area that the user is willing to release. Casper framework is composed by a *location anonymizer*, responsible for perturbing the users location to achieve the privacy preferences of users, and by a *privacy-aware query processor*, responsible for the management of anonymous queries and cloaked spatial areas.

To conclude, another line of research that relies on the concept of anonymity is aimed at protecting the path privacy of the users [76–78]. This research area is particularly relevant since in the near past many location tracking applications have been designed and developed also for devices with limited capabilities (e.g. cellular phones). Nowadays, in fact, data about users moving in a particular area are collected by external services, such as navigation systems, that use them to provide their services effectively. In such a scenario the need for privacy techniques aimed at protecting the privacy of the path becomes urgent.

Obfuscation-based solution. Another line of research in location privacy protection consists in the adoption of obfuscation techniques. Obfuscation is the process of degrading the accuracy of the information, to provide privacy protection. Differently from anonymity-based techniques the major goal of obfuscation techniques is to perturb the location information still maintaining a binding with the identity of users. Several location-based services in fact requires a user to present her identity to access the requested service.

Duckham and Kulik [79] analyzed obfuscation techniques for protecting the location privacy of users. The paper sets out a formal framework that provides a mechanism for balancing individuals needs for high-quality information services

and for location privacy. The technique is based on the imprecision concept, which means the lack of specificity of location information. The authors proposed to degrade location information quality and to provide obfuscation features by adding n points at the same probability to the real user position. The algorithm assumes a graph-based representation of the environment. In [80], the defined obfuscation methods are validated and evaluated through a set of simulations. The results show that obfuscation can provide at the same time both high quality of service and high privacy level.

In addition, today, some commercial location platforms include a gateway that mediates between location providers and location-based applications. In those architectures, such as Openwave [81], the location gateway obtains users location information from multiple sources and delivers them, possibly modified, according to privacy requirements. Openwave assumes that users specify their privacy preferences in terms of a minimum distance representing the maximum accuracy they are willing to provide.

Bellavista et al. [82] studied a solution based on a middleware that balances between the proper level of user privacy and the needs of location-based services precision. The location data are, then, exposed at the proper level of granularity depending on privacy/efficiency requirements negotiated by the parties. Hence, instead of exact client positions, a downscaled location information (with lower precision and lower geographical granularity) is returned.

Finally, some proposals [83–85] presented several obfuscation-based techniques for location privacy protection that are particularly suitable for location-based services. These techniques are based on a simple and intuitive mechanism for the definition of the privacy preferences, and on a formal estimator, named *relevance*, of both privacy and accuracy of location. In summary, these techniques provide a degree of privacy to the users by degrading the location accuracy of each measurement and offer a measurable accuracy to service providers.

Policies-based solution. Other works studied the possibility of protecting users privacy through the definition of complex rule-based policies.

Hauser and Kabatnik [86] addressed this problem in a privacy-aware architecture for a global location service, which allows users to define rules that will be evaluated to manage access to location information. Hengartner and Steenkiste [87] described a method of using digital certificates combined with rule-based policies to protect location information. The IETF Geopriv working group [88] addressed privacy and security issues related to the disclosure of location information over the Internet. The main goal is to define an environment (i.e., an architecture, protocols, and policies) supporting both location information and policy data. The Geopriv infrastructure relies on both *authorization policies*, posing restrictions on location management and access, and *privacy rules* associated with the location information, defining restrictions on how the released information can be managed by the

$\label{eq:privacy} Privacy \ in \ the \ Electronic \ Society: \ Emerging Problems \ and \ Solutions^*$

counterparts.

Some proposals used the Platform for Privacy Preferences (P3P) [41] to encode users privacy preferences. In particular, Hong et al. [89] provided an extension to P3P for representing user privacy preferences for context-aware applications, while Langheinrich [90] proposed the pawS system that provides a privacy enabling technology for end-users.

1.5.2. Open issues

We briefly describe some open issues that need to be taken into consideration in the future development of location privacy techniques.

- Privacy preference definition. A key aspect for the success of location privacy techniques is the definition of a mechanism for privacy preferences specification that balance between the two traditionally conflicting requirements of *usability* and *expressiveness*. Despite its importance for the effectiveness of a privacy solution, this issue has received little attention in previous works on location privacy.
- Balancing location privacy and accuracy. Location privacy solutions should be able to balance the need of privacy protection required by users and the need of accuracy required by service providers. Location privacy techniques, which are focused on users needs, could make the service provisioning impossible in practice due to the excessively degradation of location measurement accuracy. A possible direction to avoid excessive degradation is the definition of an estimator of the accuracy of location information, abstracting from any physical attribute of sensing technology, which permits to quantitatively evaluate both the degree of privacy introduced into a location measurement and the location accuracy requested by a service provider. Both quality of online services and location privacy could then be adjusted, negotiated, or specified as contractual terms. A quantitative estimation of the provided privacy level makes simpler the integration of privacy solutions into a full fledged location-based application scenario [91, 92].
- Composition of privacy techniques. Usually, all location privacy solutions implement a single privacy technique. This is clear in the case of obfuscation-based techniques, where most of the solutions rely on traditional obfuscation by scaling the location area. An important requirement for next generation solutions is to provide more techniques and combine them to increase their robustness with respect to possible de-obfuscation attempts performed by adversaries.
- Degree of privacy protection. Although some works [83–85] provide an estimation of the degree of privacy introduced by location privacy techniques, the *real* degree of privacy is not estimated yet. The real degree of privacy must be calculated by analyzing the possibilities of an adversary to reduce

27

the effects of the privacy techniques. As an example, consider a traditional obfuscation-based technique by scaling the location area. Let assume that the location of a user walking in an urban area has been obfuscated by just increasing the radius to return an area that covers the whole city, rather than an area with radius of some hundreds of meters. It would be reasonable for an adversary to infer that the original area covers just few neighborhoods rather than the whole city. Whereas such trivial de-obfuscation does not produce exactly the original measure, it provides the adversary with a better approximation of the original measurement than the obfuscated area, hence, reducing the user's location privacy.

1.6. Conclusions

This paper discussed aspects related to the protection of information in today's globally networked society. We investigated recent proposals and ongoing work addressing different privacy issues in emerging applications and new scenarios focussing in particular: on the combination of security policies and on their interchange and enforcement in open scenarios, on the protection of personal data undergoing public or semi-public release, and on the protection of location information in locationbased services. For all these areas, we have briefly illustrated the challenges to be addressed, current research, and open issues to be investigated.

1.7. Acknowledgements

This work was partially supported by the European Union within the PRIME Project in the FP6/IST Programme under contract IST-2002-507591, by the Italian Ministry of Research Fund for Basic Research (FIRB) under project RBNE05FKZ2 and by the Italian MIUR under project MAPS.

References

- S. De Capitani di Vimercati and P. Samarati. Privacy in the electronic society. In Proc. of the International Conference on Information Systems Security (ICISS 2006), Kolkata, India (December, 2006).
- [2] P. Liu, P. Mitra, C. Pan, and V. Atluri. Privacy-preserving semantic interoperation and access control of heterogeneous databases. In ACM Symposium on InformAtion, Computer and Communications Security, Taipei, Taiwan (March, 2006).
- [3] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati, An algebra for composing access control policies, ACM Transactions on Information and System Security. 5(1), 1–35 (February, 2002).
- [4] D. Wijesekera and S. Jajodia, A propositional policy algebra for access control, ACM Transactions on Information and System Security. 6(2), 286–325 (May, 2003).
- [5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust Management System (Version 2), internet rfc 2704 edition, (1999).

Privacy in the Electronic Society: EmergingProblems and Solutions*

- [6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proc. of the 17th Symposium on Security and Privacy, Oakland, California, USA (May, 1996).
- [7] P. Bonatti and P. Samarati, A unified framework for regulating access and information release on the web, *Journal of Computer Security*. **10**(3), 241–272, (2002).
- [8] K. Irwin and T. Yu. Preventing attribute information leakage in automated trust negotiation. In Proc. of the 12th ACM Conference on Computer and Communications Security, Alexandria, VA, USA (November, 2005).
- [9] N. Li, J. Mitchell, and W. Winsborough, Beyond proof-of-compliance: Security analysis in trust management, *Journal of the ACM*. 52(3), 474–514 (May, 2005).
- [10] J. Ni, N. Li, and W. Winsborough. Automated trust negotiation using cryptographic credentials. In Proc. of the 12th ACM Conference on Computer and Communications Security, Alexandria, VA, USA (November, 2005).
- [11] T. Yu, M. Winslett, and K. Seamons, Supporting structured credentials and sensitive policies trough interoperable strategies for automated trust, ACM Transactions on Information and System Security (TISSEC). 6(1), 1–42 (February, 2003).
- [12] C. Ardagna, S. De Capitani di Vimercati, and P. Samarati. Enhancing user privacy through data handling policies. In Proc. of the 20th Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Sophia Antipolis, France (August, 2006).
- C. Landwehr, Formal models for computer security, *Computing Surveys.* 13(3), 247–278 (September, 1981).
- [14] M. Abadi and L. Lamport, Composing specifications, ACM Transactions on Programming Languages. 14(4), 1–60 (October, 1992).
- [15] H. Hosmer. Metapolicies ii. In Proc. of the 15th NIST-NSA National Computer Security Conference, Baltimore, Maryland (October, 1992).
- [16] T. Jaeger, Access control in configurable systems, Lecture Notes in Computer Science. 1603, 289–316, (2001).
- [17] J. McLean. The algebra of security. In Proc. of the 1988 IEEE Computer Society Symposium on Security and Privacy, Oakland, CA, USA (April, 1988).
- [18] D. Bell. Modeling the multipolicy machine. In Proc. of the New Security Paradigm Workshop (August, 1994).
- [19] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian, Flexible support for multiple access control policies, ACM Transactions on Database Systems. 26(2), 18–28 (June, 2001).
- [20] N. Li, J. Feigenbaum, and B. Grosof. A logic-based knowledge representation for authorization with delegation. In Proc. of the 12th IEEE Computer Security Foundations Workshop, pp. 162–174 (July, 1999).
- [21] T. Woo and S. Lam, Authorizations in distributed systems: A new approach, Journal of Computer Security. 2(2,3), 107–136, (1993).
- [22] V. Subrahmanian, S. Adali, A. Brink, J. Lu, A. Rajput, T. Rogers, R. Ross, and C. Ward. *Hermes: heterogeneous reasoning and mediator system*. http://www.cs.umd.edu/projects/hermes.
- [23] M. Casassa Mont, S. Pearson, and P. Bramhall. Towards accountable management of identity and privacy: Sticky policies and enforceable tracing services. In Proc. of the 14th International Workshop on Database and Expert Systems Applications, Prague, Czech (September, 2003).
- [24] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate theory. RFC2693 (September, 1999).
- [25] N. Li, W. Winsborough, and J. Mitchell, Distributed credential chain discovery in trust management, *Journal of Computer Security*. 11(1), 35–86 (February, 2003).

- 30 C.A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, P. Samarati
- [26] K. E. Seamons, W. Winsborough, and M. Winslett. Internet credential acceptance policies. In Proc. of the Workshop on Logic Programming for Internet Applications, Leuven, Belgium (July, 1997).
- [27] K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and L. Yu. Requirements for policy languages for trust negotiation. In Proc. of the 3rd International Workshop on Policies for Distributed Systems and Networks (POLICY 2002), Monterey, CA (June, 2002).
- [28] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute based access control. In Proc. of the 2004 ACM Workshop on Formal Methods in Security Engineering, Washington DC, USA (October, 2004).
- [29] M. Winslett, N. Ching, V. Jones, and I. Slepchin. Assuring security and privacy for digital library transactions on the web: Client and server security policies. In *Proc. of the ADL '97 — Forum on Research and Tech. Advances in Digital Libraries*, Washington, DC (May, 1997).
- [30] T. Yu, M. Winslett, and K. Seamons. Prunes: An efficient and complete strategy for automated trust negotiation over the internet. In Proc. of the 7th ACM Conference on Computer and Communications Security, Athens, Greece (November, 2000).
- [31] W. Winsborough, K. E. Seamons, and V. Jones. Automated trust negotiation. In Proc. of the DARPA Information Survivability Conf. & Exposition, Hilton Head Island, SC, USA (January, 2000).
- [32] T. Yu, M. Winslett, and K. Seamons. Interoperable strategies in automated trust negotiation. In Proc. of the 8th ACM Conference on Computer and Communications Security, Philadelphia, PA, USA (November, 2001).
- [33] T. Yu and M. Winslett. A unified scheme for resource protection in automated trust negotiation. In *Proc. of the IEEE Symposium on Security and Privacy*, Berkeley, California (May, 2003).
- [34] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. Seamons. Adaptive trust negotiation and access control. In Proc. of the 10th ACM Symposium on Access Control Models and Technologies, Stockholm, Sweden (June, 2005).
- [35] T. van der Horst, T. Sundelin, K. Seamons, and C. Knutson. Mobile trust negotiation: Authentication and authorization in dynamic mobile networks. In *Proc. of the Eighth IFIP Conference on Communications and Multimedia Security*, Lake Windermere, England (September, 2004).
- [36] N. Li, B. Grosof, and Feigenbaum, Delegation logic: A logic-based approach to distributed authorization, ACM Transactions on Information and System Security. 6 (1), 128–171 (February, 2003).
- [37] N. Li and J. Mitchell. Datalog with constraints: A foundation for trust-management languages. In Proc. of the Fifth International Symposium on Practical Aspects of Declarative Languages (PADL 2003), New Orleans, LA, USA (January, 2003).
- [38] T. Jim. SD3: A trust management system with certified evaluation. In Proc. of the 2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA (May, 2001).
- [39] J. DeTreville. Binder, a logic-based security language. In Proc. of the 2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA (May, 2002).
- [40] G.-J. Ahn and J. Lam. Managing privacy preferences in federated identity management. In Proc. of the ACM Workshop on Digital Identity Management (In conjuction with 12th ACM Conference on Computer and Communications Security), Fairfax, VA, USA (November, 2005).
- [41] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification. World Wide Web Consortium (July, 2005). http://www.w3.org/TR/2005/WD-P3P11-20050701.

Privacy in the Electronic Society: EmergingProblems and Solutions*

- [42] A P3P Preference Exchange Language 1.0 (APPEL1.0). A P3P Preference Exchange Language 1.0 (APPEL1.0). World Wide Web Consortium (April, 2002). http://www.w3.org/TR/P3P-preferences/.
- [43] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An xpath based preference language for P3P. In Proc. of the 12th International World Wide Web Conference, Budapest, Hungary (May, 2003).
- [44] E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P. Samarati. Extending policy languages to the semantic web. In *Proc. of the International Conference on Web Engineering*, Munich, Germany (July, 2004).
- [45] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Microdata protection. In *Security in Decentralized Data Management*. Springer, (2007).
- [46] P. Samarati, Protecting respondents' identities in microdata release, IEEE Transactions on Knowledge and Data Engineering. 13(6), 1010–1027 (November, 2001).
- [47] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymity. In Security in Decentralized Data Management. Springer, (2007).
- [48] R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proc. of the 21st International Conference on Data Engineering (ICDE'05), pp. 217–228, Tokyo, Japan (April, 2005).
- [49] B. Fung, K. Wang, and P. Yu. Top-down specialization for information and privacy preservation. In Proc. of the 21st International Conference on Data Engineering (ICDE'05), Tokyo, Japan (April, 2005).
- [50] W. Winkler. Masking and re-identification methods for public-use microdata: Overview and research problems. In ed. J. Domingo-Ferrer, *Privacy in Statistical Databases 2004*. Springer, New York, (2004).
- [51] K. LeFevre, D. DeWitt., and R. Ramakrishnan. Incognito: Efficient full-domain kanonymity. In Proc. of the 24th ACM SIGMOD International Conference on Management of Data, pp. 49–60, Baltimore, Maryland, USA (June, 2005).
- [52] L. Sweeney, Achieving k-anonynity privacy protection using generalization and suppression, International Journal on Uncertainty, Fuzziness and Knowledge-based Systems. 10(5), 571–588, (2002).
- [53] V. Iyengar. Transforming data to satisfy privacy constraints. In Proc. of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 279–288, Edmonton, Alberta, Canada (July, 2002).
- [54] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing tables. In Proc. of the 10th International Conference on Database Theory (ICDT'05), pp. 246–258, Edinburgh, Scotland (January, 2005).
- [55] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu, Approximation algorithms for k-anonymity, *Journal of Privacy Technology*. paper number 20051120001, (2005).
- [56] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Proc. of the 23rd ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, pp. 223–228, Paris, France, (2004).
- [57] C. Yao, X. Wang, and S. Jajodia. Checking for k-anonymity violation by views. In Proc. of the 31st International Conference on Very Large Data Bases (VLDB'05), Trondheim, Norway (August, 2005).
- [58] A. Machanavajjhala, J. Gehrke, and D. Kifer. *l*-diversity: Privacy beyond kanonymity. In Proc. of the International Conference on Data Engineering (ICDE'06), Atlanta, GA, USA (April, 2006).
- [59] J. Domingo-Ferrer and J. Mateo-Sanz, Practical data-oriented microaggregation for statistical disclosure control, *IEEE Transactions on Knowledge and Data Engineer*-

ing. 14(1), 189–201, (2002).

- [60] C. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and P. Samarati. Privacy-enhanced location services. In *Digital Privacy: Theory, Technologies and Practices*, Taylor and Francis (to appear), (2007).
- [61] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan, Context is key, Comm. of the ACM. 48(3) (March, 2005).
- [62] M. Anisetti, V.Bellandi, E. Damiani, and S. Reale. Localization and tracking of mobile antennas in urban environment. In *Proc. of the International Symposium on Telecommunications (IST 2005)*, Shiraz, Iran (September, 2005).
- [63] B. Schlit. Ubiquitous location-aware computing and the place lab initiative. In Proc. of the First ACM International Workshop on Wireless Mobile Applications and Services on WLANHotspots, San Diego, CA (September, 2003).
- [64] L. Barkhuus and A. Dey. Location-based services for mobile telephony: a study of user's privacy concerns. In Proc. of the 9th IFIP TC13 International Conference on Human-Computer Interaction (INTERACT 2003), pp. 709–712, Zurich, Switzerland (September, 2003).
- [65] A Chronology of Data Breaches. A Chronology of Data Breaches. Privacy Rights Clearinghouse/UCAN, (2006). http://www.privacyrights.org/ar/ChronDataBreaches.htm.
- [66] Rental firm uses GPS in speeding fine. Chicago Tribune. July 2nd, p9. Associated
- Press: Chicago, IL, 2001.
- [67] J.-W. Lee. Location-tracing sparks privacy concerns. Korea Times. http://times.hankooki.com, 16 November 2004. Accessed 22 December 2006.
- [68] M. Duckham and L. Kulik, Dynamic & Mobile GIS: Investigating Change in Space and Time, chapter Location privacy and location-aware computing, pp. 34–51. Taylor & Francis, (2006).
- [69] Foxs News. Man Accused of Stalking Ex-Girlfriend With GPS. http://www.foxnews.com/story/0,2933,131487,00.html, 04 September 2004. Accessed 22 March 2007.
- [70] A. Beresford and F. Stajano. Mix zones: User privacy in location-aware services. In Proc. of the 2nd IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW04), (2004).
- [71] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and obligations in policy management and security applications. In Proc. 28th Conference Very Large Data Bases (VLDB'02) (August, 2002).
- [72] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized anonymization model. In Proc. of the 25th International Conference on Distributed Computing Systems (IEEE ICDCS 2005), Columbus, Ohio (June, 2005).
- [73] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial and temporal cloaking. In Proc. of the 1st International Conference on Mobile Systems, Applications, and Services (MobiSys 2003) (May, 2003).
- [74] M. Mokbel, C.-Y. Chow, and W. Aref. The new casper: Query processing for location services without compromising privacy. In Proc. of the 32nd International Conference on Very Large Data Bases (VLDB 2006), pp. 763–774, Korea (September, 2006).
- [75] A. Beresford and F. Stajano, Location privacy in pervasive computing, *IEEE Pervasive Computing*, 2(1), 46–55, (2003). ISSN 1536-1268.
- [76] M. Gruteser, J. Bredin, and D. Grunwald. Path privacy in location-aware computing. In Proc. of the Second International Conference on Mobile Systems, Application and Services (MobiSys2004), Boston, Massachussetts, USA (June, 2004).

Privacy in the Electronic Society: EmergingProblems and Solutions*

- [77] M. Gruteser and X. Liu, Protecting privacy in continuous location-tracking applications, *IEEE Security & Privacy Magazine*. 2(2), 28–34 (March-April, 2004).
- [78] B. Ho and M. Gruteser. Protecting location privacy through path confusion. In Proc. of IEEE/CreateNet International Conference on Security and Privacy for Emerging Areas in Communication Networks (SecureComm), Athens, Greece (September, 2005).
- [79] M. Duckham and L. Kulik. A formal model of obfuscation and negotiation for location privacy. In Proc. of the 3rd International Conference PERVASIVE 2005, Munich, Germany (May, 2005).
- [80] M. Duckham and L. Kulik. Simulation of obfuscation and negotiation for location privacy. In Proc. of Conference On Spatial Information Theory (COSIT 2005), pp. 31–48 (September, 2005).
- [81] Openwave Location Manager. Openwave Location Manager. Openwave, (2006). http://www.openwave.com/.
- [82] P. Bellavista, A. Corradi, and C. Giannelli. Efficiently managing location information with privacy requirements in wi-fi networks: a middleware approach. In Proc. of the International Symposium on Wireless Communication Systems (ISWCS'05), pp. 1–8, Siena, Italy (September, 2005).
- [83] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and P. Samarati. A middleware architecture for integrating privacy preferences and location accuracy. In *Proc. of the 22nd IFIP TC-11 International Information Security Conference (SEC 2007)*, Sandton, South Africa (May, 2007).
- [84] C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, and S. Samarati. Location privacy protection through obfuscation-based techniques. In Proc. of the 21st Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Redondo Beach, CA, USA (July, 2007).
- [85] C. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and P. Samarati. Managing privacy in LBAC systems. In Proc. of the Second IEEE International Symposium on Pervasive Computing and Ad Hoc Communications (PCAC-07), Niagara Falls, Canada (May, 2007).
- [86] C. Hauser and M. Kabatnik. Towards Privacy Support in a Global Location Service. In Proc. of the IFIP Workshop on IP and ATM Traffic Management (WATM/EUNICE 2001), Paris, France (March, 2001).
- [87] U. Hengartner and P. Steenkiste, Protecting access to people location information, Security in Pervasive Computing (March. 2003).
- [88] Geographic Location/Privacy (geopriv). Geographic Location/Privacy (geopriv) (September, 2006). http://www.ietf.org/html.charters/geopriv-charter.html.
- [89] D. Hong, M. Yuan, and V. Y. Shen. Dynamic privacy management: a plug-in service for the middleware in pervasive computing. In Proc. of the 7th International Conference on Human Computer Interaction with Mobile Devices & Services (MobileHCI'05), pp. 1–8, Salzburg, Austria, (2005).
- [90] M. Langheinrich. A privacy awareness system for ubiquitous computing environments. In eds. G. Borriello and L. E. Holmquist, Proc. of the 4th International Conference on Ubiquitous Computing (Ubicomp 2002), pp. 237–245 (September, 2002).
- [91] C. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and P. Samarati. Supporting location-based conditions in access control policies. In Proc. of the ACM Symposium on Information, Computer and Communications Security (ASIACCS'06), Taipei, Taiwan (March, 2006).
- [92] V. Atluri and H. Shin. Efficient enforcement of security policies based on tracking of mobile users. In Proc. of the 20th Annual IFIP WG 11.3 Working Conference on

Data and Applications Security, pp. 237–251, Sophia Antipolis, France (July-August, 2006).